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Abstract

Software tools available with the Ground Test
Accelerator (GTA) control system provide the capability to
express a controlproblemas a finite state machine. System
states and transitions are expressed in terms of accelerator
parameters and actions are taken based on state transitions.
This is particularly useful for sequencing opcrations which
are modal in nature ot are unwieldy when implemented with
conventional programming. State diagrams are
automatically translated into code which is executed by the
control system. ‘These tools have been applied to the vacuum
system for the GTA accelcrator to implement automatic
sequencing of operations. With a single request, the
operator may initiate a complete pump-down sequence. e
can monitor the progress and is notified if an anomaly
occurs requiring intervention. The operator is not required
to have detailed knowledge of the vacuum system and is
protected from taking inappropriate actions.

l. IN'RODUCITION

‘The approach of the GTA control system (FPICS, for
Experimental Physics and Industrial Control System) is to
provide a collection of tools which can be used to implement
computerized controls. These tools can be utilized wichout
intimate familiarity of the systtn.  Reducing the
programming expertise required of the implementer and the
amount of code required increases the sysiem's reliability
and reduces its long-term cost. :

II. THE SEQUENCER

One of the EPICS software tools, the Sequencer,
allows a controls problem to be expressed in an
accelerator-user's terms and nearly automatically produces
programming code lo implement the algorithm. The
Sequencer ool is compriscd of a State Notation languuge
(SNL.)compiler which uses a Finite State Machine paradigm,
and run-tim¢ code to assist in implementation of the
program.

A state diagram is often more useful for expressing
control problems, as the description is in terms of the
problem and is not constrained by programming -language
conventions. An cxample state diagram is shown in Figure 1.
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Figure 1. Example State Diagram.

In this example there are two states defined, correspending
to two states of a light. The connecting lines show that the
‘system’ can transition from one state w the other. The
notation next 1o the state-transition lines describes (above
the line) the condition for the transition occurring, and
(bclow the line) actions that occur as a result of the
transition. In the example, the condition for transitioning
from state 1tostate 2 is that the ‘On’button is pressed. The
condition for the opposite transition is that the ‘Off " buiton is
pressed. No action is taken if the system is in state 2 and the
‘On’ button is pressed, as there is no transiti'n describing
that case.

A slate diagram translates directly (nd yet
automatically) t a State Notation Language program.
Figure 2 shows an excerpt of the corresponding SNL
program for the example in figure |

state LIGHT_OFF
when (on_button_pressed = TRUE)
tum on light

) state LIGHT_ON
}

state LJCHT_ON
{
when (oft_button_pressed = TRUE)
{

fumn off light
} state LIGHT_QFF

Figure 2. Fxcerpt from State Notation | anguage Program.

‘The statements in italics are not part of the program
syntax. ‘The outer -most sets of bracesdelim - tates, Within
n state. the transitions are desceribed as when clauses, read
“when some condition occurs. takbe some uaction(s), und
transition to another state "' The condition is specified as the
argument to the when statement, ‘The actions (o take when



the condition is trae are specified inside the neat set of
braces.  Following these braces the destination state is
specified More than one when clause would be presentina
state if there were more than one transition out of the state.

‘The expressions shown in the when statement are truly
as simple as shown. Accelerator paramcters such as
tempcratures, pressures, etc. are made available to the SNL
program as program variables. SNL facilities provide this
interface with other pauts of the control system.

Without detailing the SNL syntax any further, it is
clear that a SNL program can be directly produced from a
state diagram with no logic or algonithmic translation. This
makes for a quick transition from problem definition to
implementation.

HI. A VACUUM SYSTEM EXAMPLE

‘The vacuura systcm for the GTA Rudio-Frequency
Quadrupole (RFQ) utilizes two cryogenic pumps and one
turbomolecular puinp. Figure 3 shows how one cryo system
is configured.
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Figure 3. Partial RFQ Vacuum System Schematic.

Fach pump and its associated instrumentation can be treated
somewhat independently, ie. a cryo pump can be
roughed out and cooled down independently of what the
turbo pump is doing. Coordination of the three pump
systems is required when they must cooperate in pumping
the vessel itself.

A procedure for preparing the ¢ryo pump for on line
pumping would be as follows:

1. Close gate valve, close purge vilve, open rough valve.
2. Start roughing pump.
3. When cryo pump pressure reaches SO millitorr, clove

rough valve, start compressor and cold head.
4. If pressure increases o 65 militorr in less than 1 minute,
open rough valve unul pressure decreases 1o less than 50
millitarr, then close rough valve.
5. When cryo pump temperature is below 200K, the pump is
ready to be placed on-hne.

Figure 4 shows this procedure expressed as a state
diagram.

Initialization

Qlose gate valve
Close purge valve
Open rough valve

Operator Request

Start 1ough pump
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Figure 4. Cryo Procedure as a State Diagram.

The provedure is broken into § states. At initialization
the system is put into a known state. On an operator request,
the system bcgins evacuating the cryo pump wiih the
roughing pump. ‘This is the ROUGHING state. Note that
this means roughing as pertains to the cryo pump, not the
RFQ vessel.

Once the pressure in the cryo purnp is less than S0
millitorr, the pump is ready to be cooled. ‘The roughing valve
is closed, and the cryo compressor and cold head are
switched on (state COOLING).

During the first minute of cooling, if water vapor has
not been adequately evaporated, it will condense and cause a
pressurc rise. If thisisdetected, the roughing valve 1s opened
and the system transitions to state EVACUATE H20). When
the pressure is again low cnough, the roughing valve isclosed
and a transition is made back to state COOLING. Note how
transitions in and out of this state implement a hysteresis
feature.

Cooling procecds until the cryo pump tempetature s
below 20 °K. When this occurs, the state diagram calls for a
transition to state READY FOR ON LINE. ‘The action
corresponding to this transition is to enable control of the
gate valve, It is not opened automatically becanse control
must be coordiniated with the other pumping systems.



This state diagram 15 not complete. It does not show
paths for system shutdown or eiror handling. Error pathsare
needed 1o accommodate problems such as devices not
operating as expected, ¢.g. the roughing valve not opening.
Errors that can be anticipated can be handled automatically.
Others require operator intervention,

The state diagram is casicr o understand hecause
much of the information is visual. It is quick 10 see what
conditions cause statc changes without reading through text
or program code. A logic error is more likely to be realized
through the state diagram than by reading program code.

This state diagram can be convenied directly 1o SNL as
described previously. ‘The SNL provides an interface with
other EPICS facilities so that conditions and actions
specificd by the sequence can be monitored and controlled
casily. For example, C-language !ike subroutine calls are
used totest the cryo pump lemperature or to operate a valve.

IV. COOPERAIIVE SFQUENCES

It was noted that this cryo pump sequence is not
completely independent of the rest of the RFQ vacuum
system. ‘1o treat the RFQ vacuum system as a single entity, a
higher-level sequence is appropriate. one specificd in terms
of the system, not in terms of individual components. Figure
S shows an example.
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command to other
wylichees

Presure < Ixl? Jory

Send e vie pumpang’
commal 1o otler
wuenees

HI VAU
PUMPING

g

wewne s Il Yk
READY 1OR Presure > Iad0 P lin
BE-AM

Close sate valves,
nohly other seyuences

e - e e e
Figure 8. High level Vacuum System State Dhiagram,

Thisdingram is expressed m terms of the REQ vicuum
system, henee “roughing’ means ronghing of the REQ s ossel,
nat one of the pumps, Agan, this is nota complete dagram
as there is no shutdown path or error paths,

Note the PROBEEM state, which illustiates how an
interlock may be impiemoented as part of the state machime,
This mteclock ismos e casly mplemented heee because the

condinon of pressure exceeding 1103 Torr s only a problem
if the system was previously READY FOR BEAM.
Actions speaified by this diagram are instructions to
fower-level sequences, not operations on particular viacuum
components.  In wrn, the lower-level sequences would
aceepi instructions from this sequence instead of directly
from an operator. This hicrarchy is illustrated in figure 6.
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Figure 6. licrarchical Sequences.

A third level sequence might later be appropriate o
coordinate RFQ  vacuum  with  other  upstream  and
downstream vicuum vessels,

V. SUMMARY

Some controls problems lend themselves better W a
state machime representation than to other paradigms, For
such problems, the BPICS Seguencer tool provides a
convenmient and  faster mplementation - method.
Hicrarchical sequences may be bult which provides i basis
for gher level aceeleritor contral.
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